
The help document of quantum compiler

Qsoftware Team in ISCAS

1 Introduction

This is a brief introduction to our quantum compiler, a part of quantum soft-
ware toolkit of Institute of Software, Chinese Academy of Science. The main
function of this tool is compiling the high-level source language in to a low-
level intermediate representation (IR). The high-level language, named isQ, is
based on [1] and similar to qWhile [2], besides we add some new features such
as recursion and local variables. The IR is similar to Rigetti’s Quil [3], but we
make some moderate changes to enable recursion stacks for recursion and local
variables. As we have not connected it to a real quantum hardware device, we
write a simulator to execute the current IR instructions. Further applying the
IR (and modifying it if necessary) to hardware like superconducting or ion-trap
will be a following step.

As the compiler in a rather raw version, if you �nd any bugs, please feel
free to inform us and we will be very grateful. We also appreciate any kind
suggestions. :)

2 Grammar

In [1], the high-level language supports several quantum instructions: initial-
ization, unitary operation, measurement. Classical control like if-statement and
loop-statement is also involved. To make the language more portable to users
and more feasible to existing quantum architectures, we permit explicitly decla-
ration of both classical and quantum variables in the source language. This in-
dicates that in the IR both quantum registers and classical registers are needed,
as Quil does.

2.1 Structure

A program written in our source language usually composes of three parts: gate
de�nition, global variable de�nition and procedure de�nition. For readability
and convenience, we require these three parts in strict order for the moment,

1

that is:

Gate Definition

:::

Global V ariable Definition

:::

P rocedure Definition

:::

And they can not overlap with each other. Only when previous part is �nished
could the users write the next part.

2.2 Gate De�nition

We permit the users to de�ne their own desired unitary operators at the very
beginning of programs. Note that some basic gates are automatically de�ned
and need no de�nition by users: H,T,X,Y,Z,CX(CNOT),CZ. They are reserved
words and cannot be used as user-de�ned gate names, variable names or proce-
dure names. Another reserve word is M, which acts as the projection measure-
ment operator.

To de�ne a new gate the user should input a complex matrix and name the
gate like below:

Defgate U1 =[c1,1; c1,2; · · · ; c1,n;

c2,1; c2,2; · · · ; c2,n;

: : :

cn,1; cn,2; · · · ; cn,n];

where U1 is the gate name and n must be a power of 2. ci,j is a complex number,
such as 0 or −0:5 + 0:5j.

2.3 Global Variable De�nition

There are two types of variables are supported currently: int and qbit. De�ne
a new int or qbit is like:

int a;

qbit b;

By the way, the user can de�ne multiple variable of same type in one clause:

qbit q0; q1; q2; q3;

We also allow de�nition of variable arrays now, like:

qbit q[3];

2

2.4 Procedure De�nition

For exibility, we permit the user to de�ne custom procedures which can recur-
sively call each other. But a main procedure must exist and can not be called
by other procedures:

procedure A() {
PROCEDURE BODY A

}

procedure main () {
PROCEDURE BODY MAIN

}

A is a proc name. PROCEDURE BODY A and PROCEDURE BODY MAIN
can contain �ve kinds of statements, which will be introduced in the following.

2.5 Statement

the permitted statements include: while statement, if statement, initialization,
assignment statement, procedure call statement. For classical control, the guard
in while and if statement can only contains classical variables. Initialization is
used to reset a quantum variable. Assignment statements include assignment
of arithmetic value, unitary operation and measurement operation.

2.5.1 while statement

while statement provides the loop structure, it has the form:

whi l e (GUARD) do
LOOPBODY

od

or

i f (GUARD) then
IFBODY 1

e l s e

A(para1 , para2 , . . . , paraM) ;

For example:

procedure A(i n t m, i n t b [] , qb i t q)

3 An Quil-like IR

For demonstration, we currently adopt an IR similar to Rigetti’s Quil. The
major di�erence lays the type of classical registers. Our IR permits an stack
besides with static memory. We use registers C[0]; C[1]; ::: to denote static
memory, and use registers s[0]; s[1]; ::: each of these registers could store a 32-
bit signed integer. Such approach make it convenient to separate the dynamic
and static memory consumption and relatively more readable to programmers.
Though whether Quil or our IR, it cannot be directly applied to a real hardware
device1.

Example 3.1 (quantum-while) See below a program with a while loop:

q b i t q , p ;
i n t x , y ;

procedure main () {
q = |0> ;
p = |0> ;
x = 0 ;
w h i l e (x == 0) do

H <p>;
CNOT <p , q>;
x = M[p] ;

od
y = M[p] ;
p r i n t x ;
p r i n t y ;

}

The compiling results:

main :
MOV REGS 0
MOV SPEC1 2
MOV SPEC2 2
Measure q [0] c [SPEC1]
JUMP−IF @IF0 c [SPEC1]==0

1In fact, there is an instruction set called QPU-executable Quil for Rigetti’s current quan-
tum devices, but in this doc we discuss the original Quil

5

X q [0]
LABEL @IF0
Measure q [1] c [SPEC1]
JUMP−IF @IF1 c [SPEC1]==0
X q [1]
LABEL @IF1
MOV c [0] 0
LABEL @LOOPGUARD0
MOV SPEC3 c [0]
MOV SPEC4 0
JUMP−UNLESS @LOOPEND0 SPEC3==SPEC4
H q [1]
CNOT q [1] q [0]
Measure q [1] c [0]
JUMP @LOOPGUARD0
LABEL @LOOPEND0
Measure q [1] c [1]
PRINT c [0]
PRINT c [1]

Example 3.2 (Grover’s �xed-point quantum search[4]) initial state |s〉,
target state |t〉, where 〈s|t〉 = 0. To search |t〉, we use following three gates
U;Rs; Rt, which satisfies:

||〈t|U |s〉||2 = (1− �) < 1

Rs = I − [1− exp(i�
3

)]|s〉〈s|

Rt = I − [1− exp(i�
3

)]|t〉〈t|

define Um as following:

• when m = 0, Um = U ;

• ∀m ≥ 0; Um+1 = UmRsU
†
mRtUm.

it can be proved by induction:

∀m > 0; ||〈t|Um|s〉||2 = 1− �3
m

program code:

De fga te Rs =[0.5+0.8660254 j , 0 , 0 , 0 ;
0 , 1 , 0 , 0 ;
0 , 0 , 1 , 0 ;

0 , 0 , 0 , 1] ;
De fga te Rs2 =[0.5−0.8660254 j , 0 , 0 , 0 ;

0 , 1 , 0 , 0 ;

6

0 , 0 , 1 , 0 ;
0 , 0 , 0 , 1] ;

De fga te Rt = [1 , 0 , 0 , 0 ;
0 , 1 , 0 , 0 ;
0 , 0 , 1 , 0 ;

0 ,0 ,0 ,0 .5+0.8660254 j] ;
De fga te Rt2 = [1 , 0 , 0 , 0 ;

0 , 1 , 0 , 0 ;
0 , 0 , 1 , 0 ;

0 ,0 ,0 ,0.5−0.8660254 j] ;

q b i t p , q , r ;
q b i t t [5] ;
i n t a , x , y ;

procedure A1(i n t a) {
i f (a==0) then

H<p>;
H<q>;

f i
i f (a>0) then

a = a − 1 ;
A1(a) ;
Rt<p , q>;
B1(a) ;
Rs <p , q>;
A1(a) ;
a = a+1;

f i
}

procedure B1(i n t a) {
i f (a==0) then

H<p>;
H<q>;

f i
i f (a>0) then

a = a − 1 ;
B1(a) ;
Rs2<p , q>;
A1(a) ;
Rt2<p , q>;
B1(a) ;
a = a + 1 ;

7

f i
}

procedure main () {
a = 2 ;
A1(a) ;

x = M [p] ;
y = M [q] ;
p r i n t x ;
p r i n t y ;

}

the compiling result (omitted lines represented by ”...”):

LABEL @PROC A1
MOV SPEC3 REGS
SUB SPEC3 2
MOV SPEC3 s [SPEC3]
MOV SPEC3 c [SPEC3]
MOV SPEC4 0
JUMP−UNLESS @IF0 SPEC3==SPEC4
H q [0]
H q [1]
. . .

MOV c [SPEC4] c [SPEC3]
ADD c [SPEC4] 1
LABEL @IF1
SUB REGS 1
JUMP−IF @CALL END A10 s [REGS]==0
JUMP−IF @CALL END A11 s [REGS]==1
JUMP−IF @CALL END A12 s [REGS]==2
JUMP−IF @CALL END A13 s [REGS]==3

LABEL @PROC B1
MOV SPEC3 REGS
SUB SPEC3 2
MOV SPEC3 s [SPEC3]
MOV SPEC3 c [SPEC3]
MOV SPEC4 0
JUMP−UNLESS @IF2 SPEC3==SPEC4
H q [0]
H q [1]
LABEL @IF2
. . .

LABEL @IF3
SUB REGS 1
JUMP−IF @CALL END B10 s [REGS]==0

8

JUMP−IF @CALL END B11 s [REGS]==1
JUMP−IF @CALL END B12 s [REGS]==2

main :
MOV REGS 0
MOV SPEC1 3
MOV SPEC2 8
MOV c [0] 2
MOV SPEC3 REGS
MOV s [SPEC3] 0
ADD REGS 1
MOV s [REGS] 3
ADD REGS 1
JUMP @PROC A1
LABEL @CALL END A13
SUB REGS 1
Measure q [0] c [1]
Measure q [1] c [2]
PRINT c [1]
PRINT c [2]

4 Discussion

As our compiler might adjust the target IR, we expect to apply our compiler on
real classic-quantum hybrid systems in the future. And the optimization of com-
pilers, which plays a pivotal role in classical computer science, has tremendous
potential in quantum computing. We will keep on updating the compiler.

References

[1] M. S. Ying, Foundations of Quantum Programming, Morgan-Kaufmann,
2016.

[2] Liu, Shusen, Wang, Xin, Zhou, Li, et al. Q|SI〉: A Quantum Programming
Environment[J]. Scientia Sinica, 2017.

[3] Smith R S, Curtis M J, Zeng W, et al. A Practical Quantum Instruction
Set Architecture.[J]. arXiv: Quantum Physics, 2016.

[4] Grover L K. Fixed-point quantum search.[J]. Physical Review Letters, 2005,
95(15): 150501.Grover L K. Fixed-point quantum search.[J]. Physical Re-
view Letters, 2005, 95(15): 150501.

9

